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 INVESTIGATION OF IMPULSIVELY-STARTED
 FLOW AROUND SIDE-BY-SIDE CIRCULAR

 CYLINDERS :  APPLICATION OF PARTICLE IMAGE
 VELOCIMETRY
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 Department of Mechanical Engineering , McGill Uni y  ersity , Montre ́  al , Que ́  bec , Canada

 (Received 13 December 1996 and in revised form 17 April 1997)

 The impulsively-started flow field for two and three circular cylinders of equal diameter
 arranged side-by-side has been investigated using particle image velocimetry (PIV) ,  over a
 transverse pitch ratio range of  T  / D  5  1 ? 0 – 3 ? 0 ,  and for Reynolds numbers from Re  5  1500
 to 3000 .  The PIV technique was used to obtain a time history of the instantaneous in-plane
 vorticity field from the moment of impulsive start ,  from which the development of the flow
 was studied .  Measurements of vortex strength and vortex position relative to the cylinders
 were obtained from these data .  Two and three cylinder configurations of  T  / D  5  1 ? 0 were
 found to exhibit a cursory degree of similarity to a single ,  isolated impulsively-started
 circular cylinder .  Side-by-side configurations of  T  / D  .  1 ? 0 were dominated by the strong
 gap flow(s) between the cylinders ,  the vortices generated alongside the gap flow(s) ,  and the
 formation of a single counter-rotating vortex pair in the far-wake .

 ÷   1997 Academic Press Limited

 1 .  INTRODUCTION

 T HE   TIME   EVOLUTION  of the flow field for a single ,  isolated circular cylinder impulsively
 set into motion may be considered to be one of the classic examples of unsteady fluid
 dynamics .  Its study has provided physical insight into a number of time-dependent fluid
 dynamic processes ,  including two-dimensional unsteady boundary layer formation and
 separation ,  and also vortex formation and vortex shedding .  The flow field is primarily
 characterized by the formation of a symmetrical recirculation zone in the cylinder near-
 wake ,  containing a pair of stationary eddies of equal strength and opposite rotation .
 Eventually ,  these eddies are shed from the cylinder and the familiar steady flow pattern
 of periodic vortex shedding is initiated ,  provided the Reynolds number is suf ficiently
 high .  The impulsively-started flow field of the circular cylinder is also marked by the
 formation of small regions of secondary vorticity ,  located downstream of the point of
 boundary layer separation .  These regions are not observed for a circular cylinder under
 steady cross-flow conditions .

 Flow visualization and other experimental studies such as those of Honji & Taneda
 (1969) ,  Nagata  et al .  (1975 ,  1979 ,  1985a ,  b ,  1989) ,  Coutanceau & Bouard (1977) ,
 Bouard & Coutanceau (1980) ,  Wu & Chu (1989) and Chu & Liao (1992) provide a
 detailed quantitative description of the recirculation zone development for Reynolds
 numbers up to and greater than 10  000 .  Sarpkaya (1991) and others have investigated
 the behaviour of the unsteady lift and drag forces .  The flow field has also been
 investigated numerically ,  with some success for low Reynolds numbers and small
 elapsed times ,  by Ta Phuoc Loc & Bouard (1985) and others .

 Small groups of circular cylinders in close proximity ,  however ,  have not been
 investigated as extensively under unsteady conditions .  Recent flow visualization
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 experiments (Sumner  et al .  1997a) have outlined ,  for the first time ,  the complex starting
 flow dynamics for two and three circular cylinders arranged in a side-by-side
 configuration ,  and the ef fects of varying the separation distance between them .  In this
 study ,  further insight into the fluid behaviour is obtained through the application of
 particle image velocimetry (PIV) ,  to provide a detailed quantitative description of the
 vortex dynamics .

 2 .  DESCRIPTION OF THE FLOW FIELD

 The flow field of a single circular cylinder of diameter  D  impulsively set into motion at
 cross-flow velocity  U ,  as shown in Figure 1(a) ,  is marked by the temporal development
 of a recirculation zone of length  L R   measured from the base of the cylinder ,  in the
 streamwise direction  x .  The recirculation zone contains a pair of primary eddies located
 at streamwise position  a  measured from the base of the cylinder ,  and separated by a
 distance  b  in the cross-stream or transverse direction  y .  The strength of a primary eddy
 may be expressed as the circulation magnitude  G   computed along the path of
 integration shown in Figure 1(b) .  In the context of the in-plane vorticity field denoted
 by  v z  ,  the length  L R   may be defined as the downstream extent of appreciable
 measured vorticity ,  a criterion that is independent of the motion reference frame ;
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 Figure 1 .  Nomenclature for impulsively-started circular cylinders of equal diameter  D :  (a) single ,  isolated
 circular cylinder ,  showing the parameters for the recirculation zone and the primary eddies ;  (b) the path of
 integration used to compute the circulation of a primary eddy ;  (c) two circular cylinders arranged

 side-by-side ;  (d) vortex centre position nomenclature for side-by-side circular cylinders with  T  / D  .  1 ? 0 .
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 otherwise ,   L R   may be defined in a nominally equivalent manner as the streamwise
 location where the local fluid velocity becomes sensibly equal to the constant cross-flow
 velocity  U .

 Configurations of two and three circular cylinders of equal diameter  D  arranged
 side-by-side are denoted by the centre-to-center transverse pitch ratio  T  / D  separating
 the cylinders ,  as shown in Figure 1(c) .  Similar definitions of  a  and  b  may be used for
 the streamwise and cross-stream positions of vortex centres ,  as shown in Figure 1(d) .

 3 .  EXPERIMENTAL APPROACH

 In this study ,  the temporal development of the flow field for a single ,  isolated
 impulsively-started circular cylinder ,  and for configurations of two and three circular
 cylinders arranged side-by-side ,  were investigated through the use of particle image
 velocimetry (PIV) (Willert & Gharib 1991) .  This work represents one of the first
 known applications of the PIV technique to unsteady bluf f-body flows .  For each
 configuration of cylinders ,  the technique was used to obtain the time history of the
 nondimensional instantaneous in-plane vorticity field ,   v z D  / U ,  as the flow developed
 over a range of nondimensional elapsed time  t * ( 5 tU  / D ) ;  the measurement uncer-
 tainty in  t * was estimated at 5% .  Experiments were conducted in a small vertical water
 towing tank of dimensions 305  mm  3  610  mm  3  1200  mm ,  as illustrated in Figure 2 .
 Plexiglas cylinder models of  D  5  25 ? 4  mm were mounted in a cantilevered fashion
 from a flat plate ,  and were pulled upwards through stationary fluid at velocities of
 U  5  60  mm / s – 110  mm / s after a nearly-impulsive start ,  yielding Reynolds numbers of
 Re  5  1500 – 3000 .  The gap between the free ends of the cylinders and the tank wall
 remained less than 0 ? 2 D .  Each cylinder had an aspect ratio of 9 ? 0 ,  and a solid blockage
 ratio of 4 ? 2% .  For most of the tests ,  the nondimensional acceleration parameter  A p

 ( 5 DU 2 2 (d u  / d t ) ,  for streamwise acceleration d u  / d t ,  and actual cylinder velocity
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 Figure 2 .  Schematic of the experimental apparatus and digital PIV instrumentation .
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 u  #  U ) ranged from 0 ? 3 to 0 ? 7 ,  indicating that nearly-impulsively-started conditions
 were usually achieved (Sarpkaya 1991) .  Results were rejected from a small number of
 tests for which  A p  ,  0 ? 3 ,  since this meant the cylinders were more slowly accelerated to
 a constant velocity  U ,  rather than impulsively-started .  The velocity of the cylinders was
 determined from the digital particle images and the PIV data ,  as discussed below ,  with
 an estimated measurement uncertainty of 3% .

 For the application of PIV ,  the water was seeded with irregularly-shaped ,  nearly
 neutrally-buoyant latex particles ,  approximately 500  m  m in ef fective diameter .  A
 section of the flow was illuminated with a pulsed light sheet generated by a 5  W
 argon-ion laser passing through a mechanical shutter ,  and successive pairs of
 single-exposed digital particle images (each of 512  3  480 pixels) were acquired with a
 Dantec Double Image 700  CCD camera and frame grabber .  The image exposure time
 was typically 5  ms ,  the time between single-exposed images comprising a pair was
 typically 6  ms ,  and the time between successive pairs (or sets of vorticity data) was
 0 ? 2  s .  Dantec FlowGrabber digital PIV software employing a cross-correlation algo-
 rithm was used to compute the raw displacement vector field from the particle image
 data ,  using an interrogation window of 32  3  32 pixels with 75% overlap .  Software
 developed in-house was used to compute the velocity and vorticity fields in the
 presence of the cylinder models ,  which typically covered a field of approximately
 150  mm  3  150  mm .

 4 .  SINGLE CIRCULAR CYLINDER

 The impulsively-started flow about a single circular cylinder was examined first .  The
 development of the instantaneous in-plane velocity and vorticity fields for Re  5  1500
 are shown in Figure 3 .  In Figure 3(a) the velocity field is shown in the experiment
 reference frame ,  with the cylinder being towed and the fluid initially stationary ;  in
 Figure 3(b) ,  the local cylinder velocity  u  #  U  has been superimposed on the velocity
 field ,  to create an inertial reference frame ;  in both cases ,  the velocity vector data have
 been rendered nondimensional using the towing velocity  U .  The vorticity contour data
 shown in Figure 3(c) ,  expressed in nondimensional form as  v z D  / U ,  may be computed
 from either velocity field since it is independent of the reference frame (unlike the
 more popular streamline representation) .  In this and subsequent figures ,  the smallest
 magnitude vorticity contour plotted was typically chosen to be 10% of the maximum
 vorticity in the flow field .  The measurement uncertainty of the vorticity data from PIV
 has been estimated at 10% .

 The nondimensional geometrical parameters  a  / D , b  / D ,  and  L R  / D ,  governing the
 structure of the recirculation zone ,  as well as the nondimensional primary eddy
 circulation  G  / UD ,  were determined from a number of experiments covering Re  5
 1500 – 1900 .  The positions of the primary eddies ,  defined by  a  / D  and  b  / D ,  were
 determined graphically from the vorticity contour data ,  and correspond to the
 geometric centres of the regions of appreciable vorticity defining the eddies ,  rather
 than the locations of maximum vorticity magnitude .  The length of the recirculation
 zone ,   L R  / D ,  was found by determining the downstream extent of the contours of
 minimum vorticity magnitude that sensibly defined the zone in question .  The
 measurement uncertainty associated with the nondimensional geometrical parameters
 a  / D , b  / D ,  and  L R  / D  was estimated at no more than 5% .  For the nondimensional
 primary eddy circulation  G  / UD ,  the closed path of integration corresponded to the
 contour line of minimum vorticity magnitude sensibly enclosing the eddy ,  bounded on
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 the upstream side by the  y -axis at the centre of the cylinder .  The measurement
 uncertainty associated with  G  / UD  was estimated to be 10% .

 The data for  a  / D , b  / D , L R  / D ,  and  G  / UD  were found to compare favourably with
 previously published data ,  as shown in Figure 4 .  Small dif ferences between the
 published eddy circulation data (Nagata  et al .  1989) and those obtained from the PIV
 data ,  as shown in Figure 4(d) ,  reflect the extreme sensitivity and dif ficulty of computing
 such quantities (Nagata  et al .  1985b) .  Apart from providing some of the first full-field ,
 instantaneous vorticity data for an impulsively-started circular cylinder ,  the results
 indicated that the experimental apparatus could reliably generate impulsively-started
 motion .

 5 .  SIDE-BY-SIDE CONFIGURATIONS WITH  T  / D  5  1 ? 0

 The case of two or three circular cylinders of equal diameter arranged side-by-side is
 examined next ,  first with  T  / D  5  1 ? 0 ,  i . e .  with the cylinders in contact with one another .
 In this case ,  the temporal development of the flow field exhibits similarity to that of a
 single cylinder .

 The vorticity data shown in Figure 5 illustrate the gradual formation of a large
 recirculation zone containing a pair of symmetric eddies of opposite rotation ,  similar to
 that observed in previous flow visualization experiments (Sumner  et al . ,  1997a) .
 Similarity between the single cylinder and side-by-side configurations with  T  / D  5  1 ? 0
 extends to the behaviour of geometrical parameters  L R  / D  and  a  / D ,  as well as the
 nondimensional primary eddy circulation  G  / UD ,  shown in Figure 6 .  In this figure ,  the
 data for two and three cylinders ,  and the elapsed time ,  are made nondimensional with
 the single cylinder diameter  D ,  rather than using 2 D  or 3 D  as the case may be ;  use of
 the latter geometrical scales to render the data dimensionless did not yield a collapse of
 the data ,  even for  b  / D .  That the recirculation zone parameters for single and multiple
 side-by-side circular cylinders do not collapse onto common curves reflects the obvious
 dif ferences in the shape of the base region between two or three side-by-side cylinders
 and a single cylinder of two or three times the diameter .  Data for  L R  / D  were also
 compared to similar measurements for a flat plate (Taneda & Honji 1971) ,  but no
 apparent convergence of the multiple cylinder data with the flat plate data is observed
 for three adjacent cylinders .

 6 .  SIDE-BY-SIDE CONFIGURATIONS WITH  T  / D  .  1 ? 0

 Two and three circular cylinders in a side-by-side configuration were then tested under
 impulsively-started conditions for  T  / D  .  1 ? 0 and up  T  / D  5  3 ? 0 for the two-cylinder
 system .  For each of the configurations ,  the temporal evolution of the vorticity field was
 determined ,  and was found to be consistent with the fluid behaviour observed in
 previous flow visualization experiments (Sumner  et al .  1997a) .  The flow fields remain
 symmetrical for each pitch ratio  T  / D  examined and at each step in the time history :  no
 evidence of an asymmetrical or biased flow pattern is observed ,  as is commonly noted
 under steady flow conditions (Bearman & Wadcock 1973 ;  Eastop & Turner 1982 ;
 Kumada  et al .  1984 ;  Williamson 1985 ;  Sumner  et al .  1997b) .

 6 . 1 .  T WO  S IDE - BY -S IDE  C IRCULAR  C YLINDERS WITH  T  / D  .  1 ? 0

 Vorticity data corresponding to the two-cylinder configurations are shown in Figure 7 .
 From  T  / D  5  1 ? 5 to  T  / D  5  3 ? 0 ,  symmetric and stable recirculation zones are not
 observed in the near-wake regions of the individual cylinders .  Rather ,  the structure of
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 the wake region is dominated by a strong gap flow between the cylinders ,  and rapid
 formation ,  shedding ,  and interaction of vortices alongside the gap flow .  The gap flow
 initiates the breakup of the recirculation zones and vortex shedding much sooner in the
 time evolution than for a single cylinder .  The far wake region is marked by the
 formation of a single counter-rotating vortex pair (that is usually symmetrical in both
 alignment with the flow axis and in the strengths of the two vortices) for  T  / D  5  1 ? 5 –
 2 ? 5 .  Shedding of the initial gap vortices is estimated to occur at  t *  5  2 ? 5 – 3 ? 0 ,
 t *  5  3 ? 0 – 3 ? 5 ,  and  t *  5  3 ? 5 – 4 ? 0 for pitch ratios of  T  / D  5  1 ? 5 ,  2 ? 0 and 2 ? 5 ,  respectively .
 Shedding of the initial gap vortices is not observed ,  however ,  at a pitch ratio of
 T  / D  5  3 ? 0   (at least up to  t *  5  5 ? 5) ,  and consequently no counter-rotating vortex pair
 forms .  For those pitch ratios where shedding is observed ,  new gap vortices form once
 the initial gap vortices are shed ,  and the near-wake region once again contains a pair of
 asymmetrical ,  quasi-attached recirculation zones .

 The strength of the initially-formed vortices is shown in Figure 8 for each of the pitch
 ratios ,  revealing in most instances a steady increase in vortex strength with time and a
 reduction in vortex strength once a vortex is shed .  The gap vortices (denoted by A) and
 the outer vortices (denoted by B) are approximately of equal magnitude of circulation
 and ,  along with the strengths of vortices that are still attached to the cylinders ,  are
 basically independent of  T  / D .  The spread of the circulation data may be attributed to
 small dif ferences in  A p   from one  T  / D  configuration to another ,  and particularly at
 T  / D  5  2 ? 5 and 3 ? 0 ;  as mentioned ,   A p   was found to vary from 0 ? 3 to 0 ? 7 ,  with the
 majority of results obtained with  A p  5  0 ? 3 .

 The streamwise location  a  and cross-stream separation  b  of like vortices ,  defined in
 Figure 1(d) ,  are presented in Figure 9 for each  T  / D .  Data for  a  / D  reveal rapid
 streamwise acceleration of the initial gap vortices (A-vortices) for  T  / D  5  1 ? 5 – 2 ? 5 ,  and
 similar but less accentuated behaviour for the outer vortices (B-vortices) .  The
 acceleration of the gap vortices varies markedly with  T  / D ,  whereas the streamwise
 location of the outer vortices is generally independent of  T  / D .  Cross-stream separation
 data  b  / D  show the movement of the initially-shed gap vortices towards the flow axis ,
 and some movement of the outer vortices .

 A close examination of the flow patterns ,  circulation data ,  and vortex position data
 shown in Figures 7 ,  8 ,  and 9 seems to suggest a dif ferent sort of fluid behaviour at
 T  / D  5  3 ? 0 compared with  T  / D  #  2 ? 5 .  Such a distinction for  T  / D  .  2 ? 5 is not entirely
 unexpected ,  since under steady conditions  T  / D  5  2 ? 2 – 2 ? 5 represents the upper limit of
 critical pitch ratio and significant proximity interference ,  beyond which biased flow
 conditions are no longer observed (Bearman & Wadcock 1973 ;  Williamson 1985 ;
 Sumner  et al .  1997b) .  An examination of the temporal and streamwise development of
 the nondimensional instantaneous gap flow velocity profile at each  T  / D  did not
 provide any additional insight into this apparent change in behaviour .

 6 . 2 .  T HREE  S IDE - BY -S IDE  C IRCULAR  C YLINDERS  WITH   T  / D  .  1 ? 0

 The time evolution of the vorticity field for the three-cylinder configurations of
 T  / D  5  1 ? 5 and 2 ? 0 is shown in Figure 10 .  For both pitch ratios ,  the flow field is
 symmetric about the central cylinder ,  with biased near-wake regions for the outer
 cylinders .  Highly complex vortex interactions occur .  At  T  / D  5  1 ? 5 in Figure 10(a) ,
 shedding of the gap vortices from the outer cylinders inhibits the immediate formation
 of a recirculation zone behind the central cylinder .  These gap vortices interact strongly
 with one another across the combined wake of the three cylinders .  The outer gap
 vortices also dominate the early development of the flow for  T  / D  5  2 ? 0 ,  seen in Figure
 10(b) .
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 Figure 8 .  Vortex strength data for two side-by-side circular cylinders with  T  / D  .  1 ? 0 impulsively set into
 motion ;  ( s ) A-vortices ;  ( d ) B-vortices :  (a)  T  / D  5  1 ? 5 ;  (b)  T  / D  5  2 ? 0 ;  (c)  T  / D  5  2 ? 5 ;  (d)  T  / D  5  3 ? 0 .
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 Figure 9 .  Vortex centre position data  a / D  and  b  / D  for two side-by-side circular cylinders with  T  / D  .  1 ? 0
 impulsively set into motion ;  ( s ) A-vortices ;  ( d ) B-vortices :  (a)  T  / D  5  1 ? 5 ;  (b)  T  / D  5  2 ? 0 ;  (c)  T  / D  5  2 ? 5 ;

 (d)  T  / D  5  3 ? 0 .
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 Figure 11 .  Vortex strength data for three side-by-side circular cylinders with  T  / D  .  1 ? 0 impulsively set
 into motion ;  ( s ) A-vortices ;  ( d ) B-vortices :  (a)  T  / D  5  1 ? 5 ;  (b)  T  / D  5  2 ? 0 .

 Circulation data for each of the vortices are shown in Figure 11 ,  and vortex location
 data  a  / D  and  b  / D  are presented in Figure 12 .  Asymmetric flow patterns ,  seen under
 steady flow conditions (Eastop & Turner 1982 ;  Kumada  et al .  1984) ,  are not observed
 under impulsively-started conditions ,  and it is presumed that any change to such a flow
 pattern occurs for  t *  .  5 ? 0 – 6 ? 0 .

 7 .  FURTHER DISCUSSION

 Comparison of circulation data for two- and three-cylinder configurations shows that
 the temporal development of the attached gap vortex strength is similar for both
 configurations ,  i . e .  it is apparently independent of the number of cylinders .  Further-
 more ,  a comparison of the strength of shed gap vortices ,  comprising the counter-
 rotating vortex pair in the far wake ,  is shown in Figure 13 to scale uniquely with the
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 Figure 12 .  Vortex centre position data  a / D  and  b  / D  for three side-by-side circular cylinders with
 T  / D  .  1 ? 0 impulsively set into motion ;  ( s ) A-vortices ;  ( d ) B-vortices :  (a)  T  / D  5  1 ? 5 ;  (b)  T  / D  5  2 ? 0 .
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 Figure 13 .  Strength of a vortex comprising the far wake counter-rotating vortex pair for dif ferent
 impulsively-started side-by-side circular cylinder configurations .  Two cylinders :  ( s )  T  / D  5  1 ? 5 ;  ( n )

 T  / D  5  2 ? 0 ;  ( h )  T  / D  5  2 ? 5 .  Three cylinders :  ( d )  T  / D  5  1 ? 5 ;  ( m )  T  / D  5  2 ? 0 .

 transverse pitch  T  rather than the cylinder diameter  D .  This result indicates that the
 strength of the counter-rotating vortex pair is proportional to the proximity of the
 cylinders ,  and by consequence to the transverse separation  b  / D  of the initially-formed
 gap vortices .  This result is consistent with a counter-rotating vortex pair not being
 observed for two cylinders at  T  / D  5  3 ? 0 ,  since interaction and mutual attraction of the
 gap vortices is weakened .

 8 .  CONCLUSIONS

 This study represents a first quantitative investigation of side-by-side circular cylinders
 under conditions of impulsively-started cross-flow ,  using particle image velocimetry
 (PIV) .  This approach permits the flow patterns to be visualized and quantified through
 measurements of the in-plane instantaneous vorticity field ,  the vortex positions ,  and the
 vortex strengths .  For configurations of  T  / D  5  1 ? 0 there is a cursory degree of similarity
 to the single cylinder ,  for the positions of the vortex centres as well as the
 nondimensional circulation of these vortices .  For configurations with  T  / D  .  1 ? 0 ,  strong
 flow through the gap(s) between the cylinders and vortices formed alongside the gap(s)
 tend to dominate the fluid behaviour .  This strong gap flow quickly initiates (i) breakup
 of the recirculation zones that form behind each of the cylinders and (ii) vortex
 shedding .  Near-wake regions of individual cylinders are asymmetrical and biased
 towards this gap flow ,  with the exception of the central cylinder of the three-cylinder
 configuration ,  which remains symmetrical .  For both the two- and three-cylinder
 configurations ,  there is strong interaction between the gap vortices ,  particularly for
 small  T  / D .  In many cases ,  the far-wake region is marked by the formation of a single
 counter-rotating vortex pair ,  the strength of which is independent of  T  / D  when  T  is
 used to nondimensionalize the circulation .
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